12. Perimeter and Area

• Perimeter of a rectangle = 2 (length + breadth)

Example:

What is the perimeter of a rectangular field whose length and breadth are 15 m and 8 m respectively?

Solution:

Perimeter of rectangular field = $2 (15 \text{ m} + 8 \text{ m}) = (2 \times 23) \text{ m} = 46 \text{ m}$

Perimeter of an equilateral triangle = $3 \times \text{length of a side}$

Perimeter of a square = $4 \times \text{length of a side}$

In general, perimeter of a regular closed polygon = Number of sides of the polygon \times length of each side

Example:

If a farmer wants to fence a square field of length 50 m with 5 rounds of wire then what is the length of the wire required?

Solution:

Length of wire required = $5 \times (perimeter of square field)$

$$= 5 \times (4 \times \text{side})$$

$$= 5 \times [(4 \times 50) \text{ m}]$$

= 1000 m

• Area of a rectangle is given by the formula:

Area of a rectangle = length \times breadth

Example: How much carpet is required to cover a rectangular floor of length 25 m and breadth 18 m?

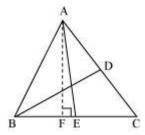
Solution: Area of the carpet required = Area of rectangular floor

$$= 25 \text{ m} \times 18 \text{ m} = 450 \text{ m}^2$$

• Area of a square is given by the formula:

Area of a square = side \times side

Example: What is the area of a square park of side 10 m 20 cm?


Solution: Length of park = 10 m 20 cm = 10.2 m

a of ark = $10.2 \text{ m} \times 10.2 \text{ m} = 104.04 \text{ m}^2$

- Area of a triangle:
 - Area of a triangle = $\frac{1}{2} \times Base \times Altitude$
 - All the congruent triangles are equal in area, but the triangles having equal areas may or may not be congruent.

Example: $\triangle ABC$ is isosceles with AC = BC = 6 cm. AE and BD are the medians and AF = 4 cm. What is the area of $\triangle ABD$?

Solution: In $\triangle ABE$ and $\triangle BAD$, we have

$$BE = AD$$

$$\angle ABE = \angle BAD$$

ind
$$\triangle BAD$$
, we have
$$\left[AC = BC \Rightarrow \frac{1}{2}AC = \frac{1}{2}BC\right]$$
[Angles opposite to equal sides]
[Common]
[Page AS congruency criterion

$$ABE - Z$$

 $AB = AB$

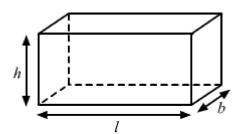
$$AB = AB$$

 $\Rightarrow \Delta ABE \cong \Delta BAD$

[By SAS congruency criterion]

Area (\triangle ABE) = Area (\triangle BAD)

Now, Area $\triangle ABE = \frac{1}{2} \times Base \times Altitude$


$$=\frac{1}{2}\times BE \times AF$$

$$= \frac{1}{2} \times \left(\frac{6 \, \text{cm}}{2}\right) \times 4 \, \text{cm}$$

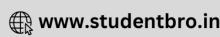
$$= 6 \text{ cm}^2$$

$$\Rightarrow$$
 Area \triangle ABD = 6 cm²

Surface areas of cuboid:

Lateral surface area of the cuboid = 2h(l + b)

Total surface area of the cuboid = 2(lb + bh + hl)

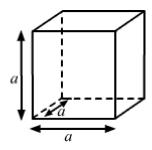

Note: Length of the diagonal of a cuboid = $\sqrt{l^2 + b^2 + h^2}$

Example:

Find the edge of a cube whose surface area is 294 m^2 .

Solution:

Let the edge of the given cube be a.


 \therefore Surface area of the cube = $6a^2$

Given,
$$6a^2 = 294$$

$$\Rightarrow a^2 = 49 \text{ m}^2$$

$$\therefore a = \sqrt{49} \text{ m} = 7 \text{ m}$$

• Surface areas of cube:

Lateral surface area of the cube = $4a^2$

Total surface area of the cube = $6a^2$

Note: Length of the diagonal of a cube = $\sqrt{a^2 + a^2 + a^2} = \sqrt{3a^2} = \sqrt{3}a$

